MATHEMATICS FOR SECONDARY SCHOOL TEACHERS - M.A.

College of Arts and Sciences

Department of Mathematical Sciences www.kent.edu/math

About This Program

The Master of Arts degree in Mathematics for Secondary School Teachers is a three-year program offered in the evenings and summer. Designed collaboratively by faculty in mathematical sciences and teacher education, the program is for in-service teachers and features both mathematics and education classes. The program does not lead to Ohio teacher licensure.

Contact Information

- Program Coordinator. Evgenia (Jenya) Soprunova | esopruno@kent.edu (etesta@kent.edu) | 330-672-9086
- Connect with an Admissions Counselor. U.S. Student | International Student

Program Delivery

- · Delivery:
 - · Mostly online
- · Location:
 - · Kent Campus

Examples of Possible Careers and Salaries*

Mathematical science teachers, postsecondary

- 1.3% slower than the average
- · 60,100 number of jobs
- · \$73,650 potential earnings

Career/technical education teachers, postsecondary

- · 1.1% slower than the average
- 124,100 number of jobs
- · \$55,620 potential earnings

Middle school teachers, except special and career/ technical education

- · 3.6% about as fast as the average
- · 627,100 number of jobs
- · \$60,810 potential earnings

Secondary school teachers, except special and career/ technical education

- · 3.8% about as fast as the average
- · 1,050,800 number of jobs
- · \$62,870 potential earnings
- * Source of occupation titles and labor data comes from the U.S. Bureau of Labor Statistics'

Occupational Outlook Handbook. Data comprises projected percent change in employment over the next 10 years; nation-wide employment numbers; and the yearly median wage at which half of the workers in the occupation earned more than that amount and half earned less

For more information about graduate admissions, visit the graduate admission website. For more information on international admissions, visit the international admission website.

Admission Requirements

- Bachelor's degree in mathematics or mathematics education (or in another discipline plus mathematics coursework equivalent to an undergraduate program in mathematics education) from an accredited college or university
- · Minimum 2.750 undergraduate GPA on a 4.000 point scale
- Official transcript(s)
- · Goal statement
- · Résumé or curriculum vitae
- · Three letters of recommendation
- English language proficiency all international students must provide proof of English language proficiency (unless they meet specific exceptions) by earning one of the following:
 - · Minimum 525 TOEFL PBT score (paper-based version)
 - · Minimum 71 TOEFL IBT score (Internet-based version)
 - · Minimum 74 MELAB score
 - Minimum 6.0 IELTS score
 - Minimum 50 PTE score
 - · Minimum 100 Duolingo English test score

For more information about graduate admissions, visit the graduate admission website. For more information on international admission, visit the Office of Global Education's admission website.

Application Deadlines

- · Fall Semester
 - Rolling admissions
- · Spring Semester
 - · Rolling admissions
- · Summer Term
 - · Rolling admissions

Program Requirements

Title

Major Requirements

Code

		Hours
Major Requirements		
CI 67224	TEACHING MATHEMATICS USING COMPUTERS AND CALCULATORS	3
CI 67225	RESEARCH IN MATHEMATICS EDUCATION	3
CI 67791	SEMINAR IN MATHEMATICS EDUCATION	3

Credit

MATH 64091	SEMINAR IN MATHEMATICS EDUCATION (repeatable)	6	
Mathematics Electi	ves, choose from the following:	15	
MATH 51021	THEORY OF MATRICES		
MATH 52001	ANALYSIS I		
MATH 52021	GRAPH THEORY AND COMBINATORICS		
MATH 52041	ADVANCED CALCULUS		
MATH 52201	NUMERICAL COMPUTING I		
MATH 55021	EUCLIDEAN GEOMETRY		
MATH 55022	LINEAR GEOMETRY		
MATH 57011	THEORY OF NUMBERS		
MATH 57057	ADVANCED CONCEPTS OF GEOMETRY		
MATH 57067	ADVANCED CONCEPTS OF PROBABILITY AND STATISTICS		
MATH 57077	ADVANCED CONCEPTS OF ALGEBRA		
Culminating Require			
MATH 69099	CAPSTONE PROJECT	2	
Minimum Total Credit Hours:			

Graduation Requirements

- Minimum 32 credit hours of graduate credit with minimum 16 credit hours at the 60000 level and 22 credit hours in mathematics
- · Final presentation and report of the capstone project

Program Learning Outcomes

Graduates of this program will be able to:

- Reason in mathematical arguments, including using precise definitions, articulating assumptions and reasoning logically to conclusions.
- Engage effectively in problem solving, including exploring examples, devising and testing conjectures and assessing the correctness of solutions
- 3. Approach mathematical problems creatively, including trying multiple approaches and modifying problems when necessary to make them more tractable.
- 4. Communicate mathematics clearly both orally and in writing.
- 5. Teach high school-level mathematics.
- 6. Understand and appreciate connections among different subdisciplines of mathematics.
- Be aware of and understand a broad range of mathematical subdisciplines.
- 8. Obtain a broader and deeper understanding of algebra, geometry and analysis and their interpretation in the K-12 curriculum.